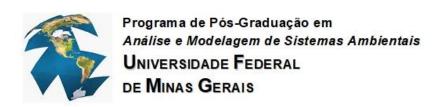
Monitoramento ambiental em escala nacional: Porquê utilizar indicadores biológicos?

Prof. Diego Rodrigues Macedo



UNIVERSIDADE FEDERAL DE MINAS GERAIS

Departamento de Geografia www.diegomacedo.pro.br diegorm@ufmg.br

Monitoramento Qualidade de Água no Brasil

Brasil: Resolução CONAMA 357/2005

Águas doces – Classes Especial, 1 a 4

Resoluções Estaduais

- Estabelece os critérios de qualidade
- Definição dos limites de lançamento de resíduos;
- Efetivação do enquadramento

http://pnga.ana.gov.br/enguadramento-bases-conceituais.aspx

CLASSES DE ENQUADRAMENTO

USOS DAS ÁGUAS DO	CES	ESPECIAL	1	2	3	4
Preservação do equilíbrio natural das comunidades aquáticas	15	Classe mandatória em Unidades de Conservação de Proteção Integral				
Proteção das comunidades aquáticas	*		Classe mandatória em Terras Indígenas			
Recreação de contato primário	Ŀ					
Aquicultura						
Abastecimento para consumo humano		Após desinfecção	Após tratamento simplificado	Após tratamento convencional	Após tratamento convencional ou avançado	
Recreação de contato secundário	<u>*</u>					
Pesca	4					
Irrigação	P		Hortaliças consumidas cruas e frutas que se desenvolvam rentes ao solo e que sejam ingeridas cruas sem remoção de película	Hortaliças, frutíferas, parques, jardins, campos de esporte e lazer,	Culturas arbóreas, cerealíferas e forrageiras	
Dessedentação de animais	M					
Navegação	_					
Harmonia paisagística	•					

http://pnga.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf

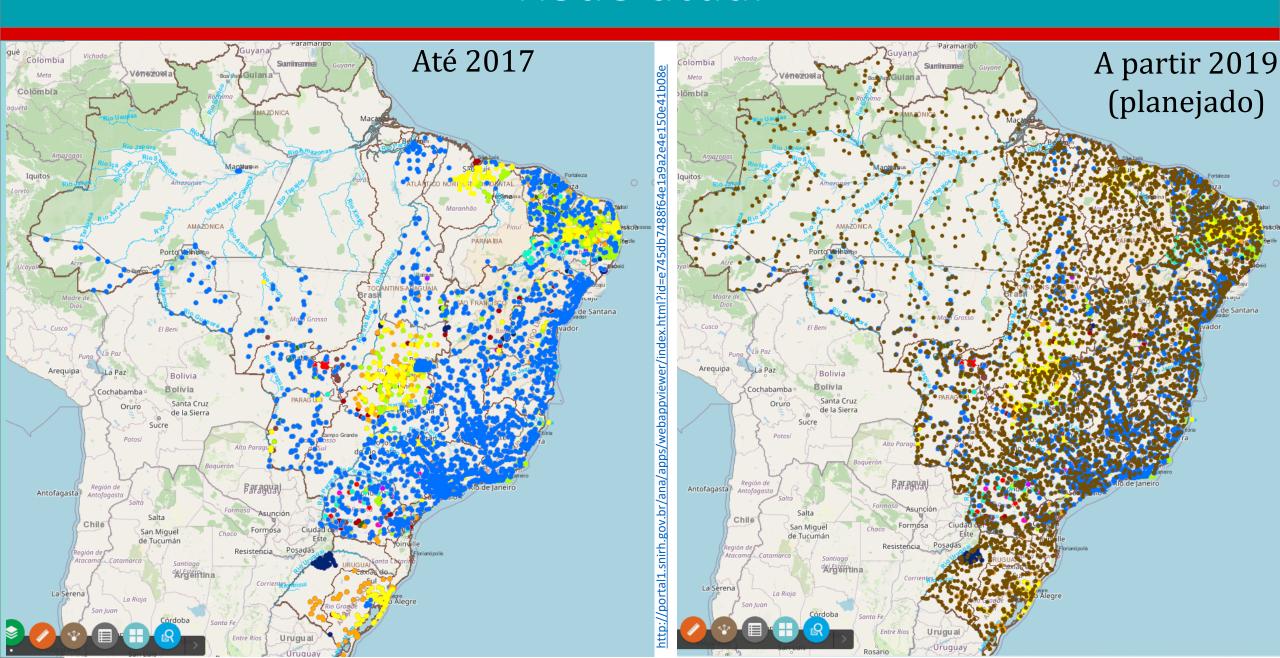

Padrões de qualidade

TABELA I - CLA	SSE 1 - AGUAS DOCES				
. PADRÕES					
PARAMETROS	VALOR MAXIMO				
Clorofila a	10 μg/L				
Densidade de cianobactérias	20.000 cel/mL ou 2 mm ³ /L				
Sólidos dissolvidos totais	500 mg/L				
PARAMETROS INORGANICOS	VALOR MAXIMO				
Aluminio dissolvido	0.1 mg/L Al				
Antimônio	0,005mg/L Sb				
Arsênio total	0,01 mg/L As				
Bário total	0,7 mg/L Ba				
Berilio total	0,04 mg/L Be				
Boro total	0,5 mg/L B				
Cadmio total	0,001 mg/L Cd				
Chumbo total	0,01mg/L Pb				
Cianeto livre	0,005 mg/L CN				
Cloreto total	250 mg/L Cl				
Cloro residual total (combinado + livre)	0,01 mg/L Cl				
Cobalto total	0,05 mg/L Co				
Cobre dissolvido	0,009 mg/L Cu				
Cromo total	0,05 mg/L Cr				
Ferro dissolvido	0,3 mg/L Fe				
Fluoreto total	1,4 mg/L F				
Fósforo total (ambiente lêntico)	0,020 mg/L P				

Monitoramento no Brasil

- O monitoramento focado em parâmetros físicos e químicos
- Realizado por uma variedade de órgãos estaduais de meio ambiente e recursos hídricos, companhias de saneamento e empresas do setor elétrico
- Sem padronização de parâmetros, sazonalidade, etc
- Necessidade de coletas periódicas
- Rede desbalanceada em relação ao tamanho dos rios
- Rede desbalanceada em relação a extensão geográfica

Rede atual

Monitoramento Ambiental em Escala Nacional - EUA

Shapiro et al. 2008

1972: Congresso Americano – *Clean Water Act* (CWA)

Restaurar e manter a integridade física, química e biológica dos recursos dos EUA, assegurando a proteção da vida selvagem e atividades recreativas

30 ano depois...

Monitoramento Ambiental em Escala Nacional - EUA

- Existe um problema de qualidade de água?
- Se sim, qual a extensão do problema?
- O problema é generalizado ou pontual?
- Quais estressores ambientais afetam a qualidade dos riachos e rios americanos, e quais são os mais prejudiciais?

- ➤ 2002: vários grupos revisaram os dados existentes e concluíram que não era possível a elaboração de um relatório sobre a condição dos recursos aquáticos
- Críticas pesadas de jornais e órgãos do governo
- ➤ EPA: deve promover uma abordagem uniforme e consistente de monitoramento ambiental, da coleta de dados e adoção de medidas biológicas.

Shapiro et al. 2008

Monitoramento Ambiental em Escala Nacional - EUA

1989: EPA iniciou o *Environmental Monitoring and Assessment Program* (EMAP)

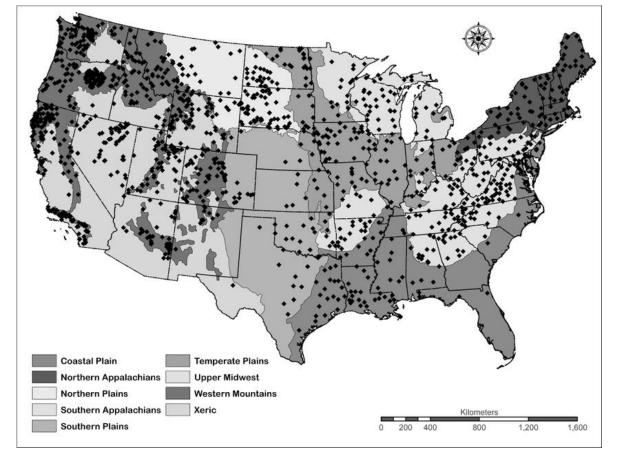
- Desenvolver ferramentas científicas para monitorar a condição dos recursos aquáticos e importância dos estressores
- Focado em 2 áreas: desenho amostral e indicadores ecológicos
- Criar medidas biológicas que pudessem ser geradas e interpretadas de forma consistente em todo o país

2006: Wadeable Streams Assessment (WSA)

Primeiro resumo estatisticamente sólido da condição ecológica de riachos nos EUA (2000-2004)

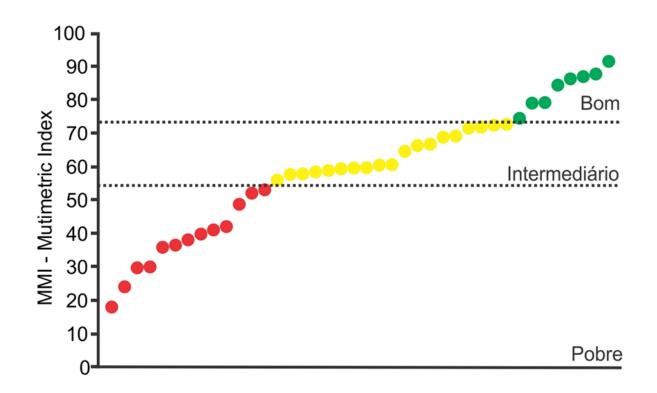
Metodologia Padronizada

Objetivos

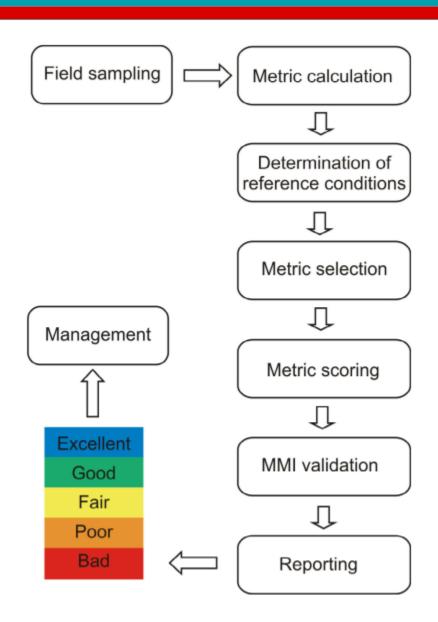

- Relatório sobre a condição ecológica de todos os rios e riachos dentro dos EUA
- 2. Descrever a condição ecológica desses sistemas com medidas diretas da vida aquática
- 3. Identificar e ranquear a importância relativa dos estressores químicos e físicos que afetam a condição de ecossistemas aquáticos

Protocolos padronizados de amostragem, processamento e interpretação dos principais indicadores de condição biológica e estressores

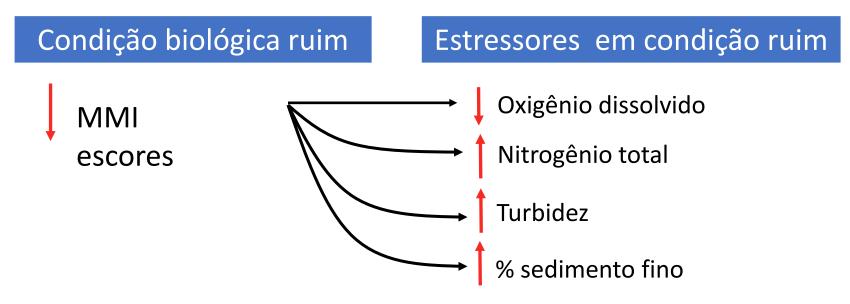
Desenho amostral probabilístico



- Seleção aleatória espacialmente balanceada: permite expansão dos resultados para as áreas não amostradas
- Riachos wadeable, perenes, 1-5^a ordem
- 1392 sites
- Protocolos padronizados: avaliação nacional consistente


Índices de Integridade Biótica (Índices Multimétricos)

• Índice sintético de atributos ou métricas biológicas que reflita distúrbios antrópicos em ecossistemas aquáticos ao longo de um gradiente de condições ambientais (Karr et al., 1986)


Índices de Integridade Biótica (Índices Multimétricos)

• Esquema geral de uma abordagem comum para o desenvolvimento de um MMI

Risco Relativo (RR)

 Risco Relativo-RR: probabilidade de se encontrar condição biológica ruim associada a estressores em condição ruim.

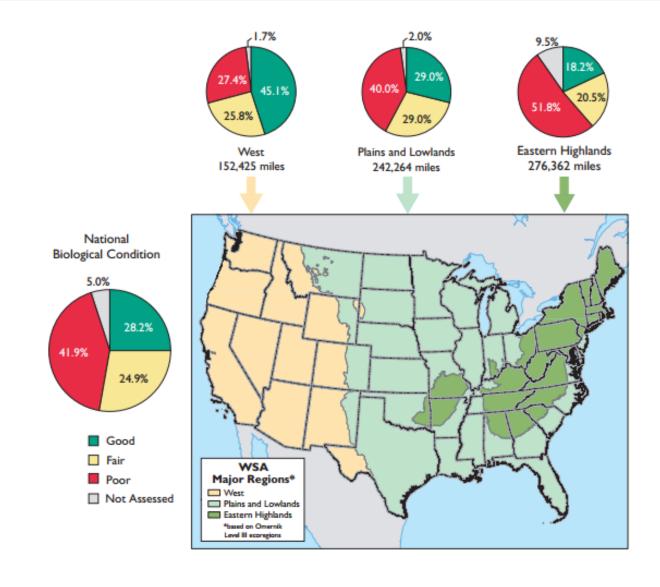
 Severidade de determinado estressor para a condição biológica

Extensão de Estressores (RE)

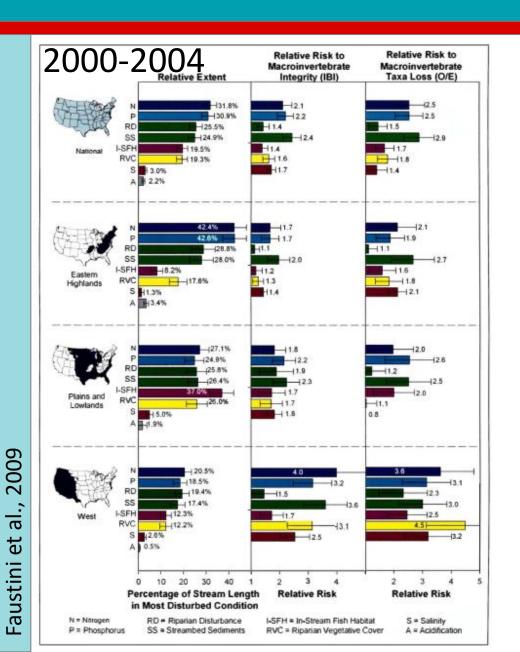
- Extensão de Estressores -RE: extensão de riachos em condição ruim para determinado estressor em dada área.
- p. ex.: 100 sítios amostrados, 70 apresentaram condição ruim para oxigênio dissolvido.
- Desenho amostral: estimativas extensão de riachos (km).
- p. ex.: de 2000 km de riachos amostrados, 1800 km apresentaram condição ruim para oxigênio dissolvido.
- Magnitude na qual a condição ruim para determinados estressores foi encontrada em uma região.

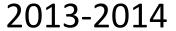
Condição Geral dos EUA — 2000-2004

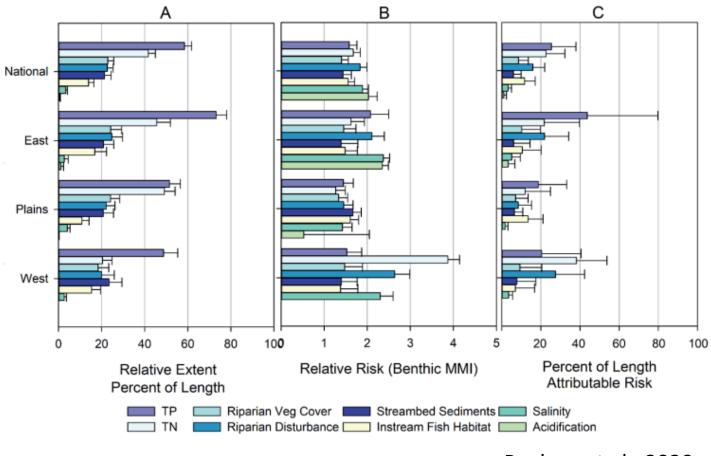
Condição ecológica


42%: condição ecológica ruim

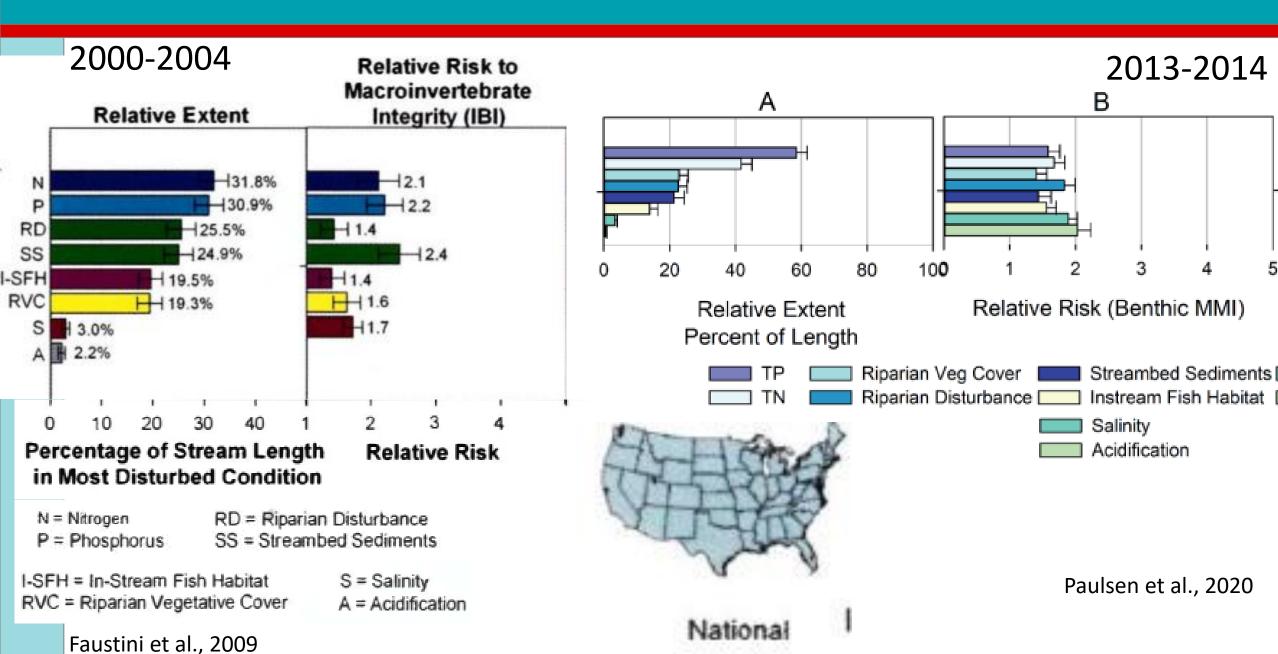
25%: condição ecológica razoável


28%: condição ecológica boa


Principais estressores:


- Nitrogênio
- Fósforo
- Distúrbio na vegetação ripária
- Deposição de material fino

Comparação multi-temporal



Paulsen et al., 2020

Comparação multi-temporal

É possível implementar no Brasil?

Ecological Indicators 110 (2020) 105953

Е

FISEVIER

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

journal homer

Are multiple multimetric indices effective for assessing ecological condition in tropical basins?

A multi-assemblage, multi-metr eastern Amazonia streams

Kai Chen^{a,b}, Robert M. Hughes^{c,*}, Janaina buniversidade Federal de José M.B. de Oliveira-Júniorⁱ, Vívian C. de Chamis Opes Institute and Joice Ferreira^k, Neusa Hamada^d, Leandro Juen¹, Jorge Ne

Isabela Martins^a,*, Diego Rodrigues Macedo^b, Robert M. Hughes^c, Marcos Callisto^a

^a Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, MG, Brazil

b Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geografia, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, MG, Brazil

^eAmnis Opes Institute and Oregon State University, Department of Fisheries & Wildlife, 104 Nash Hall 97331-3803 Corvallis, OR, USA

it of the

Jansen Zuanon d

A macroinvertebrate mi

S.R.M. Couceiro a,b,*, N. Hamad

Development of

Unified Multimetric Index for the Evaluation of the Biological Condition of Streams in Southern Brazil Based on Fish and Macroinvertebrate Assemblages

Renata Ruaro $^{0^{1,2}}$ · Éder André Gubiani 1,3 · Almir Manoel Cunico 4,5 · Janet Higuti 2 · Yara Moretto 4,5 · Pitágoras Augusto Piana 1,3

(MMI) for Neotropical Savanna headwater streams

Diego R. Macedo ^{a,*}, Robert M. Hughes ^b, Wander R. Ferreira ^a, Kele R. Firmiano ^a, Deborah R.O. Silva ^a, Raphael Ligeiro ^c, Philip R. Kaufmann ^d, Marcos Callisto ^a

ghes d,e

Ecological Indicators 81 (2017) 514-525

Contents lists available at ScienceDirect

Ecological Indicators

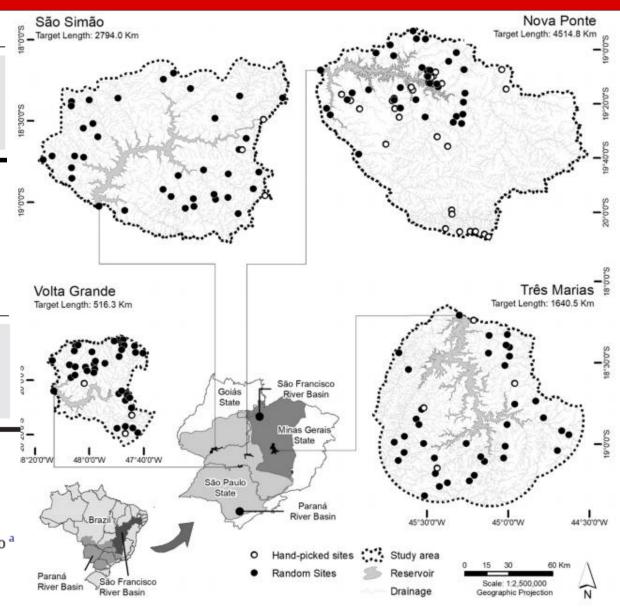
journal homepage: www.elsevier.com/locate/ecolind

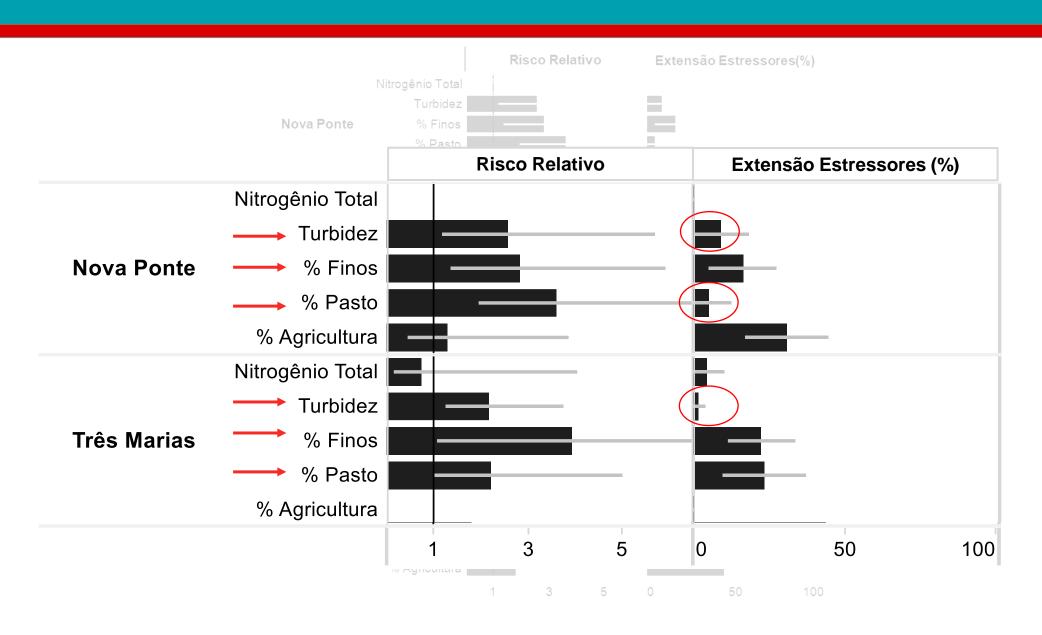
Original Articles

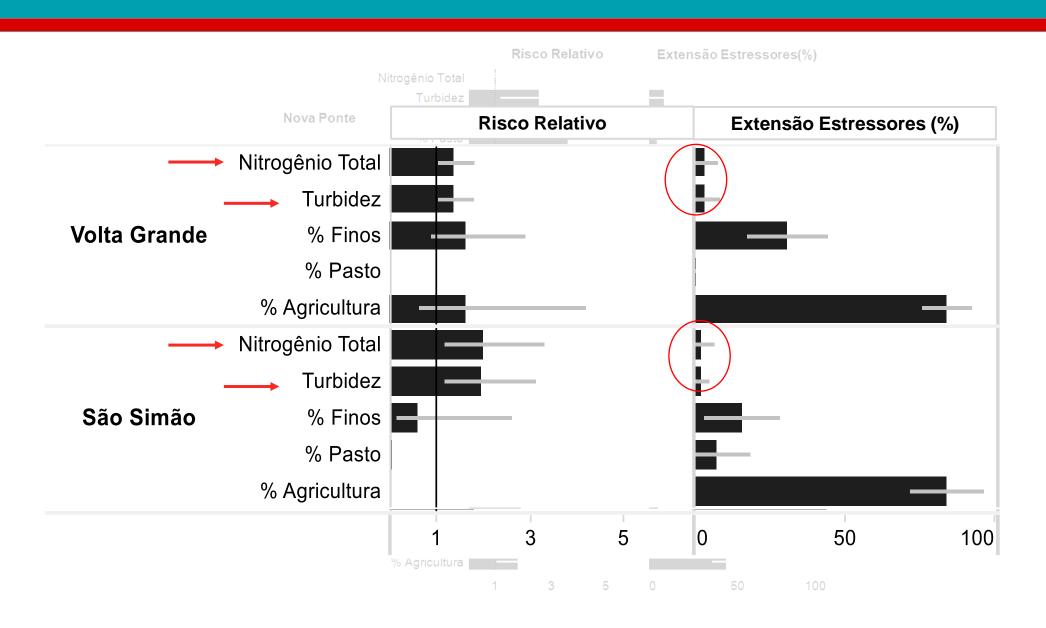
An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna

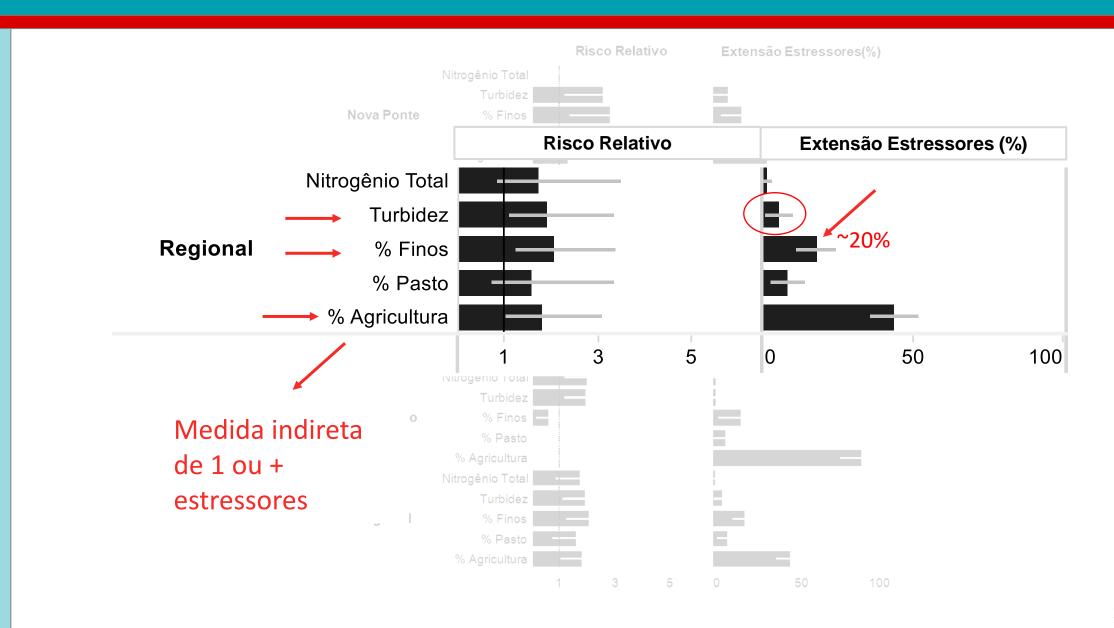
Déborah R.O. Silva^{a,*}, Alan T. Herlihy^b, Robert M. Hughes^c, Marcos Callisto^a

Science of the Total Environment 633 (2018) 179-188


Contents lists available at ScienceDirect


Science of the Total Environment


journal homepage: www.elsevier.com/locate/scitotenv


Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna

Déborah R.O. Silva a,*, Alan T. Herlihy b, Robert M. Hughes c, Diego R. Macedo d, Marcos Callisto a

Conclusões

- Metodologia padronizada é robusta para avaliações ao longo do tempo
- Indicadores biológicos respondem a um série de distúrbios antropogênicos
- Possibilidade em identificar os principais estressores associados às piores condições biológicas
- Possibilidade em avaliar a magnitude destes estressores
- Avaliação integrada da qualidade ambiental
- Mudança da base legal, regulando o monitoramento biológico
- Necessidade da ação coordenada da Agencia Nacional de Águas

Referencias

- Carvalho et al. 2017. A fish-based multimetric index for Brazilian savanna streams. Ecol. Indic. 77, 386–396.
- Chen et al. 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazonia streams. Ecol. Indic. 78, 48–61.
- Couceiro et al. 2012. A macroinvertebrate multimetric index to evaluate the biological condition of streams in the Central Amazon region of Brazil. Ecol. Indic. 18, 118–125.
- Faustini et al. 2009. Assessing stream ecosystem condition in the United States. Eos, Trans. Am. Geophys. Union 90, 309–310.
- Macedo et al. 2016. Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecol. Indic. 64, 132–141.
- Martins et al. 2020. Are multiple multimetric indices effective for assessing ecological condition in tropical basins? Ecol. Indic. 110, 105953.
- Oliveira et al. 2011. Towards rapid bioassessment of wadeable streams in Brazil: development of the Guapiau-Macau multimetric index (GMMI) based on benthic macroinvertebrates. Ecol. Indic. 11, 1584–1593.
- Paulsen et al. 2008. Condition of stream ecosystems in the US: an overview of the first national assessment. J. North Am. Benthol. Soc. 27, 812–821
- Paulsen et al. 2020. Rivers and Streams: Upgrading Monitoring of the Nation's Freshwater Resources Meeting the Spirit of the Clean Water Act, in: Water Quality Science, Assessments and Policy. IntechOpen, London, UK, pp. 50–74.
- Ruaro et al. 2019. Unified multimetric index for the evaluation of the biological condition of streams in Southern Brazil based on fish and macroinvertebrate assemblages. Environ. Manage. 64, 661–673.
- Ruaro et al. 2020. Global trends and challenges in multimetric indices of biological condition. Ecol. Indic. 110, 105862.
- Shapiro et al. 2008. The need to assess the condition of aquatic resources in the US. J. North Am. Benthol. Soc. 27, 808–811.
- Silva et al. 2017. An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecol. Indic. 81, 514–525.
- Silva et al. 2018. Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Sci. Total Environ. 633, 179–188.

Muito Obrigado www.diegomacedo.pro.br diegorm@ufmg.br